Input:
dsolve(y(1,x)^2-2*y^2-4*y-2)
Write:
`dsolve(y(1,x)^2-2*y^2-4*y-2)`
Output: $$ dsolve({(y^{(1)}(x))}^{2}-2\ {y}^{2}-4\ y-2) == \frac {log(1+y)}{\sqrt {2}}=C_1+x\ and\ \frac {(-log(1+y))}{\sqrt {2}}=C_1+x $$ Result:$$\frac {log(1+y)}{\sqrt {2}}=C_1+x\ and\ \frac {(-log(1+y))}{\sqrt {2}}=C_1+x$$