Input:
d((sin(x) * x^2) / (1 + tan(cot(x))))
Write:
`d((sin(x) * x^2) / (1 + tan(cot(x))))`
Output: $$ \frac{d}{dx} (\frac {sin(x)}{1+tan(cot(x))})\ {x}^{2} == (\frac {2\ sin(x)}{1+tan(cot(x))})\ x+({csc(x)}^{2}\ sin(x)\ (1+{tan(cot(x))}^{2})\ \frac{1}{(1+tan(cot(x)))^2}+\frac {cos(x)}{1+tan(cot(x))})\ {x}^{2} $$ Result: $$(\frac {2\ sin(x)}{1+tan(cot(x))})\ x+({csc(x)}^{2}\ sin(x)\ (1+{tan(cot(x))}^{2})\ \frac{1}{(1+tan(cot(x)))^2}+\frac {cos(x)}{1+tan(cot(x))})\ {x}^{2}$$
Home | list | about | forum | wiki | contact | copyright | index | 中文